A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

Authors

  • A. Ghomashi Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, ‎Iran.
  • M. Abbasi Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, ‎Iran.
Abstract:

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global convergence of the proposed neural network is proved.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

full text

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

full text

A NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS

Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...

full text

A Recurrent Neural Network for Solving Complex-Valued Quadratic Programming Problems with Equality Constraints

A recurrent neural network is presented for solving systems of quadratic programming problems with equality constraints involving complex-valued coefficients. The proposed recurrent neural network is asymptotically stable and able to generate optimal solutions to quadratic programs with equality constraints. An opamp based analogue circuit realization of the recurrent neural network is describe...

full text

Discrete neural network for solving general quadratic programming problems

Abstract: Quadratic programming problems are widespread class of nonlinear programming problems with many practical applications. The case of inequality constraints have been considered in a previous author’s paper. Later on an extension of these results for the case of inequality and equality constraints has been proposed. Based on equivalent formulation of Kuhn-Tucker conditions, a new neural...

full text

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  339- 347

publication date 2018-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023